Flávio Sousa

October 20, 2011

Why do forest fire simulations?

- Forest fire has a heavy toll on natural and economic resources
- Poses a danger to human lives
- 1500 km² per year of Portuguese land burned (60 % affects residential area)
- Fire is a complex and destructive phenomena

Flávio Sousa

Why do forest fire simulations?

- Forest fire has a heavy toll on natural and economic resources
- Poses a danger to human lives
- 1500 km² per year of Portuguese land burned (60 % affects residential area)
- Fire is a complex and destructive phenomena

A forecast enables tactical decision by the fire fighting crew

Forest Fire Simulators

- Fire Front Behavior
- Forecast for the next hours
- Manage fire fighting efforts

Forest Fire Simulators

- Fire Front Behavior
- Forecast for the next hours
- Manage fire fighting efforts

Better informed decision

Current Picture

- Continuous development since the 70's
- Many software applications by government forest research centers
- Valuable tool in fire fighting and prevention

Data

Fire Front Position

Motivation and Scope

- Fuel Maps
- Wind Data
- Topography

Data

- Fire Front Position
- Fuel Maps
- Wind Data
- Topography

Math Models

- Surface Fire
- Canopy Fire
- Spotting

Data

Fire Front Position

Motivation and Scope

- Fuel Maps
- Wind Data
- Topography

Math Models

- Surface Fire
- Canopy Fire
- Spotting

Fire Front

Parametric Uncertainty

Motivation and Scope

Problem: Uncertainty of Input Data

Idea Concept

Parametric Uncertainty

Problem: Uncertainty of Input Data

"(...) poorly defined winds and unknown precision of fuel maps."

- Farsite Manual

Problem: Uncertainty of Input Data

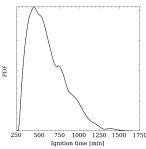
"(...) poorly defined winds and unknown precision of fuel maps."

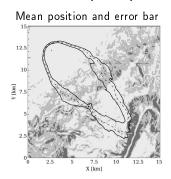
- Farsite Manual

Solution:

Stochastic Uncertainty Quantification methods

Idea Concept


Quick Overview:


- Input variables described by PDF (e.g. mean and SD of Gaussian)
- Issue several deterministic fire front simulations
- Several methods:
 - Monte Carlo "Brute Force"
 - Spectral Projection: "Selective Sampling"
- Post Processing: "probabilistic" prediction

Idea Concept

Stochastic UQ: post processing and forecast

PDF of ignition time

PDF of ignition time 250 500 1000 1250 1500

Ignition time [min]

Idea Concept

Computation time becomes troublesome in faster than real time (FTRT) simulations

Flávio Sousa

FTRT Fire Front Simulation

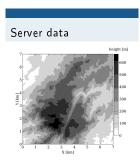
- Optimization and performance of the fire model
- Possible solution: Exploit code parallelism with GPUs
- Server based simulation remote access

A forest fire numerical model with parametric UQ, accessed remotely by fire fighting crews

Window of opportunity:

- Smart-phone application based interface
- Price and availability of GPU platforms offering impressive SP
- Fire models are available in the public domain

Motivation and Scope


Local data

Remote Aplication Operation

Motivation and Scope

Forecast ā 12.5

X [km]

Idea Concept

[w] 7.5

Business Model

Motivation and Scope

- Fire models are public domain (although stochastic fire modeling is a new concept and GPU porting is not trivial)
- Closed source distribution is not a suitable approach

Business Model

- Fire models are public domain (although stochastic fire modeling is a new concept and GPU porting is not trivial)
- Closed source distribution is not a suitable approach
- Service: computing time in state-of-the-art HPC servers to worldwide users
- Main clients: fire fighting departments, faculties, research departments, private users

Business Model

- Fire models are public domain (although stochastic fire modeling is a new concept and GPU porting is not trivial)
- Closed source distribution is not a suitable approach
- Service: computing time in state-of-the-art HPC servers to worldwide users
- Main clients: fire fighting departments, faculties, research departments, private users
- Server limitation addressed by a queue priority oriented fee: high priority users pay more to run first

- Predict fire behaviour
- Access worst case scenarios and ignition time probability
- Evaluate residential area risk
- Manage efforts and resources

Idea Concept